

GO-ESSP Meeting, RAL, June 2005

The BODC Parameter Markup and Usage Vocabulary Semantic Model

Presentation Outline

- ➤ Parameter codes and their metadata load
- > EnParDis Project
- > BODC PMUV Semantic Model
- **►Issues: Synonyms and Tooling**
- **➢ Points to Ponder**

What is a Parameter Code?

- ➤ According to the original oceanographic data standard (GF3) a parameter code is a key attached to a data value that:
 - **□** Specifies:
 - * What was measured
 - * How it was measured
 - * Actual (not canonical) units of measurement
 - ☐ Is defined through the attributes of a parameter dictionary
 - ☐ Includes semantics (e.g. TEMP7RTD, TEMP7STD)
- ➤ The data models of IODE data centres were strongly influenced by GF3 concepts (even if the format was little used)
- Parameter codes are therefore endemic in legacy oceanographic data

What is a Parameter Code?

- Parameter codes have been grossly abused by the oceanographic data management community
- Codes mapped to free text fields causing
 - □ Compromised semantic purity (e.g. vague spatiotemporal co-ordinates like 'sea-surface' introduced)
 - ☐ Incomplete or ambiguous specifications. Sample GF3 parameters:
 - * Sea temperature (estuaries?)
 - * Potential temperature (of what?)
 - * Potential air temperature (OK!)
 - * Wet bulb temperature (could be in water!)
 - ☐ Metadata overload (e.g. taxon names included in parameter what was measured descriptions)
 - **□** Random scatterings of synonyms
 - ☐ Parameter semantics in unit definitions (e.g. per gram dry weight)

What is a Parameter Code?

- ➤ BODC joined in this abuse through a Parameter Dictionary following the GF3 model
- BODC Parameter Dictionary originally mapped code to:
 - ☐ Two plain-text fields of what measured (parameter) and how (parameter subgroup)
 - □ Units specification
 - □ Valid data range
 - **□** Formatting information
 - **☐** Abbreviated description label
- ➤ As chemistry and biology were added the plain-text fields evolved into a total mess

Enabling Parameter Discovery (EnParDis)

- EnParDis was a one-off injection of NERC funding aiming to:
 - ☐ Integrate taxonomic knowledge into the BODC Parameter Dictionary
 - * Include data on penguins in a query for 'birds'
 - * Based on ITIS and works providing taxa are in ITIS
 - ☐ Totally overhaul the parameter plaintext descriptions
 - * Standardise terms and syntax
 - * Eliminate implied semantics
- Plaintext field overhaul achieved by using structured text (concatenated elements from a semantic model)

Semantic Model

- The Semantic Model maps each parameter code to a set of atomic metadata elements populated by entries from controlled vocabularies
- ➤ The parameter description is built by structured concatenation of the Semantic Model elements
- ➤ The Semantic Model forms a flexible interface between legacy systems based on parameter codes and/or semantically poor text descriptions and modern (meta)data content models
- ➤ The Parameter Dictionary becomes a registry of valid Semantic Model element combinations (insurance against the introduction of the green dog)

Semantic Model

- ➤ The parameter description is built up as three themes:
 - What theme what was measured
 - □ Where theme where it was measured (sphere NOT spatio-temporal co-ordinates or their textual representation like sea surface)
 - ☐ How theme how it was measured
- > Example
 - **☐** Temperature (What)
 - □ of the water column (Where)
 - □ by CTD (How)

What Theme

- ➤ Parameter Entity of Measurand Entity (chemical, physical or biological) by Measurand Entity
- > Examples
 - □Clearance rate of Dinophycae by Acartia
 - **□**Concentration of nitrate+nitrite
 - **□**Temperature

Parameter Entity

- >Three Semantic Elements
 - **□**Parameter Name
 - *Example: concentration
 - **□**Parameter Statistic
 - *Example: standard deviation
 - □ Parameter Subgroup
 - *Example: v/v

Biological Entity

➤ Nine Semantic Elements

- **□Taxon Name**
- □ITIS code for taxon
- □Taxon size
- **□**Taxon gender
- **□**Taxon development stage
- □Taxon morphology (shape terms)
- □Taxon subcomponent (body parts)
- **□**Taxon colour
- □Taxon subgroup (subdivision 'bucket')

Chemical Entity

- >Two Semantic Elements
 - **□Chemical name**
 - *Example: carbon
 - □Chemical subgroup
 - *Example: organic

Physical Entity

- > Three Semantic Elements
 - **□Physical Name**
 - * Examples: sea surface elevation, temperature
 - □Physical subgroup
 - * Example: IPTS-68
 - **□** Datum
 - * Example: Ordnance Datum Newlyn

Where Theme

- ➤ Relationship and a Sphere Entity or Biological Entity
- > Examples
 - □Per unit volume of the water column
 - **□Of the atmosphere**
 - □Per unit wet weight of Mytilus edulis flesh
 - □Per unit dry weight of sediment
 - □Per unit area of the water column

Sphere Entity

- > Four Semantic Elements
 - **□Sphere Name**
 - * Example: sediment
 - **□Sphere subgroup**
 - * Example: <63um
 - **□Sphere phase**
 - * Examples: particulate, aerosol, gaseous, dissolved plus reactive particulate
 - **□Sphere phase subgroup**
 - * Examples: >GF/F, 2-20um

How Theme

- > Sample processing entity
 - □ Example: radiotracer inoculation and incubation in natural sunlight
- > Analysis entity
 - **□**Example: proportional counting
- Data processing entity
 - □ Example: conversion to carbon using unspecified algorithm

How Theme

- ➤ Sampling and Data Processing Entities are single entities
- >Analysis Entity has two Semantic Elements
 - □ Analysis Description
 - □ Analysis Instance Discriminator (multiple sensors)

Issues

> Synonyms

- **□What synonyms do we need?**
- ☐ How do we store them?
- ☐ How do we utilise them?

≻Tooling

- **□**Tools for code assignment
- **□**Tools for dictionary expansion

Synonyms

> Synonyms required for:

- **□What Theme**
- **□**Parameter Name
- **□**Parameter Entity
- **□Chemical Name**
- **□Chemical Entity**
- **□Physical Name**
- **□Physical Entity**
- **□**Biological Entity
- **□**Taxon name
- **□**Parameter Description
- □ Probably more as well

Synonyms

- > The following information needs to be known for each synonym
 - ☐ The Semantic Model entity type
 - ☐ The primary term
 - ☐ The secondary term
- ➤ Could be managed through a conventional relational schema, but RDF seems more attractive as there is more to relationships than 'synonymous'
- Current thinking on synonym exposure is to produce multiple parameter descriptions for a single parameter code incorporating all synonym combinations

Tooling

- ➤ Web services to give access to code definitions, model elements, controlled vocabularies, mappings and synonyms
- Automated data markup tooling based on model semantic element specification
- ➤ Automated request mechanism for dictionary population extension with efficient moderation mechanism
- Could be configured as a single tool sitting on a common set of services

Points to Ponder

➤ What is the mapping between components of the Semantic Model and a CF Standard Name?

➤ How can the CF Standard Name list and the BODC Data Markup vocabulary be integrated into a unified resource covering both the oceanographic and atmospheric domains?